Математической статистики и ее новых разделов в современных условиях.

Классическая статистика математическая лучше всего представлена в [2,4]. По историческим причинам основные российские работы публикуются в [3]. Обзор современного состояния статистики математической дан в [6].

Статистика объектов нечисловой природы

- раздел математической статистики, в котором статистическими данными являются объекты нечисловой природы, т.е. элементы множеств, не являющихся линейными пространствами. Объекты нечисловой природы нельзя складывать и умножать на число. Примерами являются результаты измерений в шкалах наименований, порядка, интервалов; ранжировки, разбиения, толерантности и другие бинарные отношения; результаты парных и множественных сравнений; люсианы, т.е. конечные последовательности из 0 и1; множества; нечеткие множества. Необходимость применения объектов нечисловой природы возникает во многих областях научной и практической деятельности, в том числе и в социологии. Примерами являются ответы на "закрытые" вопросы в эконометрических, маркетинговых, социологических анкетах, в которых респондент должен выбрать одну или несколько из фиксированного числа подсказок, мили измерение мнений о привлекательности (товаров, услуг, профессий, политиков и др.), проводимое по порядковой шкале. Наряду со специальными теориями для каждого отдельного вида объектов нечисловой природы в статистике объектов нечисловой природы имеется и теория обработки данных, лежащих в пространстве общей природы, результаты которой применимы во всех специальных теориях.

В статистике объектов нечисловой природы классические задачи математической статистики - описание данных, оценивание, проверку гипотез - рассматривают для данных неклассического типа, что приводит к своеобразию постановок задач и методов их решения. Например, из-за отсутствия линейной структуры в пространстве, в котором лежат статистические данные, в статистике объектов нечисловой природы математическое ожидание определяют не через сумму или интеграл, как в классическом случае, а как решение задачи минимизации некоторой функции. Эта функция представляет собой математическое ожидание (в классическом смысле) показателя различия между значением случайного объекта нечисловой природы и фиксированным элементом пространства. Эмпирическое среднее определяют как результат минимизации суммы расстояний от нечисловых результатов наблюдений до фиксированного элемента пространства. Справедлив закон больших чисел: эмпирическое среднее сходится при увеличении объема выборки к математическому ожиданию, если результаты наблюдений являются независимыми одинаково распределенными случайными объектами нечисловой природы и выполнены некоторые математические "условия регулярности".

Аналогичным образом определяют условное математическое ожидание и регрессионную зависимость. Из доказанной в статистике объектов нечисловой природы сходимости решений экстремальных статистических задач к решениям соответствующих предельных задач вытекает состоятельность оценок в параметрических задачах оценивания параметров и аппроксимации, а также ряд результатов в многомерном статистическом анализе. Большую роль в статистике объектов нечисловой природы играют непараметрические методы, в частности, методы непараметрической оценки плотности и регрессионной зависимости в пространствах общей природы, в том числе и в дискретных пространствах.

Для решения многих задач статистики объектов нечисловой природы - нахождения эмпирического среднего, оценки регрессионной зависимости, классификации наблюдений и др. - используют показатели различия (меры близости, расстояния, метрики) между элементами рассматриваемых пространств, вводимые аксиоматически. Так, в монографии [7] аксиоматически введено расстояние между множествами. Принятое в теории измерений как части статистики объектов нечисловой природы условие адекватности (инвариантности) алгоритмов анализа данных позволяет указать вид средних величин, расстояний, показателей связи и т.д., соответствующих измерениям в тех или иных шкалах. Методы построения, анализа и использования классификаций и многомерного шкалирования дают возможность сжать информацию и дать ей наглядное представление. К статистике объектов нечисловой природы относятся методы ранговой корреляции, статистического анализа бинарных отношений (ранжировок, разбиений, толерантностей), параметрические и непараметрические методы обработки результатов парных и множественных сравнений. Теория люсианов (последовательностей независимых испытаний Бернулли) развита в асимптотике растущей размерности.

Перейти на страницу: 1 2 3



Этапы разработки управленческих решений

Существуют разнообразные точки зрения на то, какие решения, принимаемые человеком в организации, считать управленческими. Некоторые специалисты относят к таковым, например, решение о поступлении человека на работу, решение об увольнении с неё и т.п. оправданной представляется точка зрения, согласно которой к управленческим решениям следует относить лишь те, которые затрагивают отношения в организации.

Особенности американского менеджмента

За всю историю существования менеджмента многие зарубежные страны накопили значительные сведения в области теории и практики управления в промышленности, сельском хозяйстве, торговле и другие с учетом своих специфических особенностей. К сожалению, наша отечественная наука управления развивалась самостоятельно и обособленно, часто игнорируя зарубежный опыт искусства управления.